Ultrafast large-area micropattern generation in nonabsorbing polymer thin films by pulsed laser diffraction.

نویسندگان

  • Ankur Verma
  • Ashutosh Sharma
  • Giridhar U Kulkarni
چکیده

An ultrafast, parallel, and beyond-the-master micropatterning technique for ultrathin (30-400 nm) nonabsorbing polymer films by diffraction of laser light through a 2D periodic aperture is reported. The redistribution of laser energy absorbed by the substrate causes self-organization of polymer thin films in the form of wrinklelike surface relief structures caused by localized melting and freezing of the thin film. Unlike conventional laser ablation and laser writing processes, low laser fluence is employed to only passively swell the polymer as a pre-ablative process without loss of material, and without absorption/reaction with incident radiation. Self-organization in the thin polymer film, aided by the diffraction pattern, produces microstructures made up of thin raised lines. These regular microstructures have far more complex morphologies than the mask geometry and very narrow line widths that can be an order of magnitude smaller than the openings in the mask. The microstructure morphology is easily modulated by changing the film thickness, aperture size, and geometry, and by changing the diffraction pattern.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Longitudinal Magneto-Optical Kerr Effect in Ce:YIG Thin Films Incorporating Gold Nanoparticles

We report an experimental study on optical and magneto-optical properties of Cesubstituted yttrium iron garnet thin films incorporating gold nanoparticles. Au nanoparticles were formed by heating Au thin film on cubic quartz and garnet substrate in vacuum chamber and a Ce:YIG layer was deposited on them by the aid of Pulsed laser deposition method. A large enhancement of the longitudinal Kerr e...

متن کامل

Title of Thesis : DIRECT LASER FABRICATION OF DIFFRACTION GRATINGS ON POLYMER THIN FILMS AND WAVEGUIDES

Title of Thesis: DIRECT LASER FABRICATION OF DIFFRACTION GRATINGS ON POLYMER THIN FILMS AND WAVEGUIDES Glenn D Hutchinson, Master of Science, 2005 Thesis Directed By: Professor Chi H. Lee, Department of Electrical and Computer Engineering With the increasing interest in polymer integrated optical devices, techniques for fabrication of efficient polymer diffraction gratings are of critical impor...

متن کامل

Pulsed laser deposition of VO2 thin films

High quality vanadium dioxide ~VO2! thin films have been successfully deposited by pulsed laser deposition without postannealing on ~0001! and ~101̄0! sapphire substrates. X-ray diffraction reveals that the films are highly oriented with ~010! planes parallel to the surface of the substrate. VO2 thin films on ~0001! and ~101̄0! substrates show semiconductor to metal transistions with electrical r...

متن کامل

Optical and Nonlinear Optical Response of Light Sensor Thin Films

For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum r...

متن کامل

Atomic Structure Determination of Ba4Ti5O10 and Ba4Ti4O11 in Epitaxial Barium Titanate Nanodomains Using HRTEM and Electron Diffraction

Perovskite BaTiO3 thin films have a wide range of applications for advanced devices. Especially, epitaxial BaTiO3 thin films are highly desirable for these advanced applications. So far, such epitaxial BaTiO3 films have been successfully fabricated on different single-crystal substrates using various deposition techniques including RF magnetron sputtering, molecular beam epitaxy, metallorganic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Small

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2011